If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+10u-25=0
a = 3; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20}{2*3}=\frac{-30}{6} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20}{2*3}=\frac{10}{6} =1+2/3 $
| (3c=2)+4(1.3c-5)=0 | | 15/60=x/90 | | 5x/12+1/6=-(2x+5) | | (3c=2)=4(1.3c-5)=0 | | 2s-74=22 | | 3(1+7n)=2n-16 | | 10(24)=2(y-3) | | ŷ=0.1+3.1x. | | 20-2w=14 | | 3(1=7n)=2n-16 | | x/7+8.3=-9.2 | | 24+7y=10y | | (x-3)+(2x-9)=0 | | 9=2/3x+1 | | 18-5v=v | | 2x−0.7x=0 | | 2(x-1)-3(x+1)=0 | | y=4E-06(2017)+0.8262 | | 2(2x-4)-2x=6 | | -5c+-23=27 | | j3=4.5 | | 5(x-5)^2=29 | | 12/5=5c | | .29t/t^2+16=0 | | x=8-(30/x) | | 6y(y-2)=8-2y | | -28=-9k+26 | | 3(x-1)-3(x+2)=0 | | (3y-20)=(5y-16) | | a=1.1a | | (X-1)/2x+4=-1/3 | | 153=1000000/y |